

Identification of Haze Creating Sources from Fine Particulate Matter in Dhaka Aerosol using Carbon Fractions Data

> Bilkis A. Begum Atomic Energy centre, Dhaka Bangladesh Atomic Energy Commission

Air Quality Parameters • PM (PM₁₀, PM_{2.5}) • SO_x • NO_x • CO • Ozone • Trace elements in PM's etc.

19 May 2013

19 May 2013

Impact of Air Pollution

- -Health Effect
- -Visibility

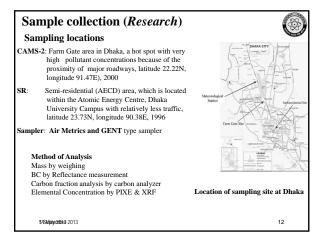
5050dater20028 2013

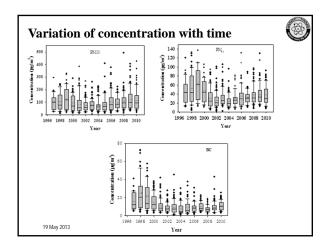
- -Production of crops
- -Climate change

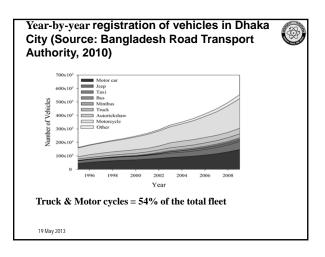
Pollutant	Bangladesh Objective	Average	
		8	
со	10 mg/m ³ (9 ppm)	8 hours	
	40 mg/m ³ (35 ppm)	1 hours	
Pb	0.5 μg/m ³	Annual	
NO ₂	100 μg/m ³	Annual	
PM_{10}	50 μg/m ³	Annual	
	150 μg/m ³	24 hours	
PM _{2.5}	15 µg/m ³	Annual	
	65 μg/m ³	24 hours	
03	235 µg/m ³	1 hours (d)	
	157 μg/m ³	8 hours	
SO ₂	80 µg/m ³	Annual	
	365 µg/m ³	24 hours	
The most car	ious nollutant of a	oncern in Banglade	~ h

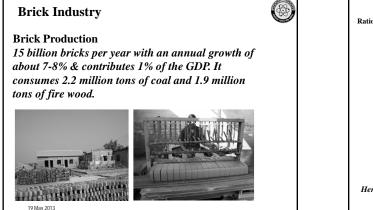
• Experience in Dhaka, Bangladesh

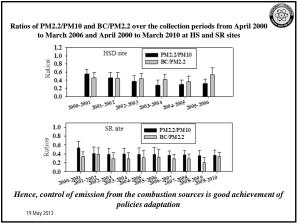
Air quality status in Dhaka

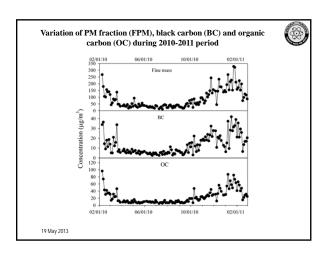

- Assessment of impact of different policy interventions (such as, unleaded gasoline, banning of two-stroke baby taxis, CNG adaptation)
- Assessment of ambient air quality particularly PM in Dhaka city
- Identification of potential sources, source locations
- Identification of haze creating sources from FPM
- Evidence of long range transport

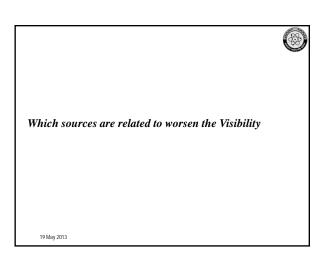

5 Sleiptyczóbież 2013

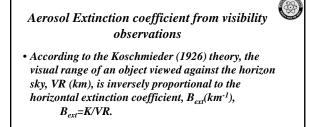

Adaptation of policies taken by the Government to reduce the PM emission from motor vehicle *These are*


- o banning of use leaded gasoline from July 1999
- o improved training of engine mechanics, import and marketing of mineral oil without additives and set minimal standards for lubricants
- banning of two-stroke three-wheel taxis from January 2003 and removal of trucks and buses that were more than 20 years old
- o a phased reduction of gasoline-powered by introducing CNG, &
- electronic traffic signals to increase the mobility of vehicles.


595kelater20043 2013



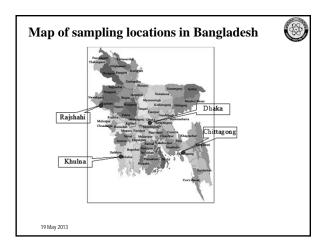



Source		Fi	Fine PM samples (µg/m³)				
	2001-2002		2005	-2006	2007-2009		
	Mass	BC	Mass	BC	Mass	BC	
otor vehicle	7.16	2.50	5.62	0.38	12.1	0.02	
ick kiln	2.23	1.37	11.1	4.14	7.59	7.41	
ietal smelter	1.87	0.00	1.94	0.53	-	-	
a salt	0.19	0.00	0.60	0.00	2.12	0.00	
vo Stroke/Zn	1.75	1.11	1.94	1.07	1.49	0.62	
l dust	1.92	0.0	2.74	0.18	3.21	0.02	
oad dust	3.63	1.63	5.14	1.09	4.97	0.57	
igitive Pb			-	-	2.22	0.01	
1	18.7	6.61	29.1	7.38	33.7	8.12	
M	22.1	7.90	30.5	9.23	37.3	8.21	

Source composition profiles for fine particulate matter using fractions of OC and EC	
Bisk kin 000 001 01	
19 May 2013	

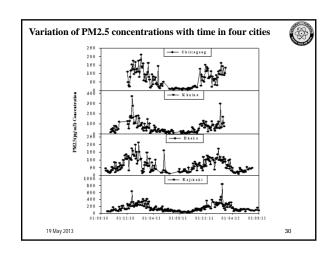
Source	Modeling with OC & EC			Modeling with fraction of OC &EC			
	Mass	OC	EC	Mass	OC	EC	
Road dust	3.34	0.57	0.50	6.59	1.91	1.92	
Sea salt & Zn	3.21	0.00	0.00	4.42	0.26	0.05	
Soil dust	14.5	4.40	2.39	4.03	0.78	0.14	
Motor vehicle	36.0	9.28	3.01				
Brick kiln	24.5	7.95	6.29	31.2	7.91	5.99	
Gasoline				5.39	1.40	0.75	
Diesel				16.8	4.73	1.54	
Fugitive Pb				7.9	3.77	1.98	

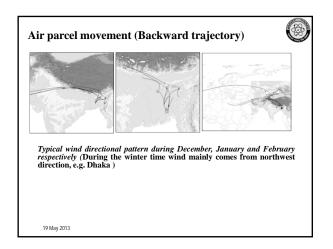
• Where K=Koschmieder constant which is equal to 3.92 (real target is not black, small, angular in size)

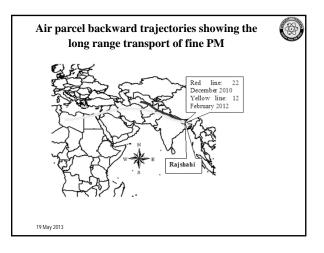

19 May 2013

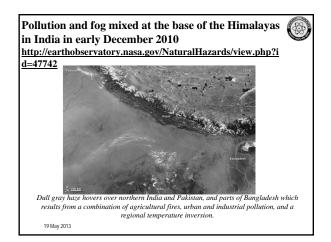
Visibility	
 Particle size depends on Particle composition Relative humidity Reflective Index Particle composition Thus, particle composition is a key determinant of extinction 	
19 May 2013	

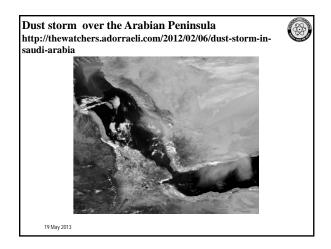
Season	Visibility	B _{ext}
	Km	Km ⁻¹
Pre-monsoon	5.14±0.45	0.76 ±0.07
Monsoon	5.46 ± 0.38	0.72 ±0.05
Post-monsoon	4.93±0.68	0.81 ±0.11
Winter	3.34±0.01	1.34 ±0.70
Winter	3.34±0.01	1.34 ±0.70


Source	Coefficient Estimate (m²/g)	Standard Error (m ² /g)	T Statistic	P-Value
Road dust	62.1	10.1	6.18	0.00
Brick kilns	6.60	1.00	6.42	0.00
Gasoline	27.2	5.60	4.88	0.00
Diesel	6.80	1.10	6.11	0.00
Pb	7.80	3.20	2.39	0.02






Year	Season	Rajshahi	Dhaka	Khulna	Chittagong
		Mean±STD	Mean±STD	Mean±STD	Mean±STD
2010- 11	Monsoon	-	30.3 ±11.6	-	-
	Post- monsoon	127 ±66.4	68.6±32.7	51.3 ±29.3	-
	Winter	277 ±94.0	104 ±49.8	120 ±72.9	113 ±47.4
2011- 12	Pre- monsoon	143 ±79.6	50.0 ±35.5	42.5 ±28.9	56.6 ±39.4
	Monsoon	55.4 ±26.5	26.8 ±10.5	19.6 ±11.8	11.7 ±2.32
	Post- monsoon	109 ±31.8	65.8 ±21.4	63.1 ±37.8	60.5 ±45.9
	Winter	271 ±140	101 ±23.6	84.6 ±52.6	33.7 ±0.71
2012	Pre- monsoon	151 ±77.5	39.1 ±23.1	-	-
	Monsoon	100 ±28.2	41.3 ±11.1	-	-


Parameter	Statistics	Rajshahi	Dhaka	Khulna	Chittagong
Fine PM	Mean	155	65.1	64.7	73.3
	Median	121	56.0	52.0	74.2
	STD	112	41.2	56.8	50.7
	Threshold Value	379	147	178	175
BC	Mean	13.1	7.20	5.84	4.32
	Median	10.8	7.40	5.20	3.32
	STD	7.05	3.31	3.58	2.67
	Threshold Value	27.2	13.8	13.0	9.66

